如图,在五面体 中,四边形 是正方形, 平面 , , , , .
(Ⅰ)求异面直线
与
所成角的余弦值;
(Ⅱ)证明
平面
;
(Ⅲ)求二面角
的正切值。
设
分别是椭圆
的左右焦点,
是
上一点且
与
轴垂直,直线
与
的另一个交点为
.
(1)若直线
的斜率为
,求
的离心率;
(2)若直线
在
轴上的截距为
,且
,求
.
某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:
(1)分别估计该市的市民对甲、乙两部门评分的中位数;
(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;
(3)根据茎叶图分析该市的市民对甲、乙两部门的评优.
如图,四棱锥
中,底面
为矩形,
平面
,
是
的中点.
(1)证明:
//平面
;
(2)设
,三棱锥
的体积
,求
到平面
的距离.
四边形
的内角
与
互补,
.
(1)求
和
;
(2)求四边形
的面积.
设函数
,记
的解集为
,
的解集为
.
(1)求
;
(2)当
时,证明:
.