游客
题文

已知三棱锥 P - A B C 中, P A A B C , A B A C , P A = A C = 1 2 A B , N A B 上一点, A B = 4 A N , M , S 分别为 P B , B C 的中点.
image.png

(Ⅰ)证明: C M S N

(Ⅱ)求 S N 与平面 C M N 所成角的大小.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐V标方程为,M,N分别为曲线C与x轴、y轴的交点.
(1)写出曲线C的直角坐标方程,并求M,N的极坐标;
(2)求直线OM的极坐标方程.

设函数2|x-3|+|x-4|.
(1)求不等式的解集;
(2)若不等式的解集不是空集,求实数a的取值范围.

已知的导函数的简图,它与轴的交点是(0,0)和(1,0),


(1)求的解析式及的极大值.
(2)若在区间(m>0)上恒有≤x成立,求m的取值范围.

已知双曲线C:离心率是,过点,且右支上的弦过右焦点
(1)求双曲线C的方程;
(2)求弦的中点的轨迹E的方程;
(3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.

已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号