如图,直三棱柱 A B C - A 1 B 1 C 1 中, A C = B C , A A 1 = A B , D 为 B B 1 的中点, E 为 A B 1 上的一点, A E = 3 E B 1
(Ⅰ)证明: D E 为异面直线 A B 1 与 C D 的公垂线; (Ⅱ)设异面直线 A B 1 与 C D 的夹角为45°,求二面角 A 1 - A C 1 - B 1 的大小
已知向量. (1)当时,求的值; (2)设函数,已知在△ABC中,内角A、B、C的对边分别为,若,求()的取值范围.
已知数列的前项和, (1)求和; (2)记,求数列的前项和.
如图,是圆的直径,点在圆上,,交于点,平面,,. (1)证明:; (2)求平面与平面所成的锐二面角的余弦值.
已知为等差数列,且,。 (1)求的通项公式; (2)若等比数列满足,,求的前n项和公式.
(本小题满分13分) 已知数列满足,且当时,,令. (Ⅰ)写出的所有可能的值; (Ⅱ)求的最大值; (Ⅲ)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号