某校对高三年级800名男生的身高(单位:cm)进行了统计,随机抽取的一个容量为50的样本的频率分布直方图的部分图形如图所示,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(1)估计这所学校高三年级全体男生身高180 cm以上(含180 cm)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.
已知tanα,是关于x的方程x2-kx+k2-3=0的两实根,且3π<α<
π,
求cos(3π+α)-sin(π+α)的值.
(1)已知角α的终边经过点P(4,-3),求2sinα+cosα的值;
(2)已知角α的终边经过点P(4a,-3a)(a≠0),求2sinα+cosα的值;
集合.
(1)若AB=
,求a的取值范围.
(2)若AB=
,求a的取值范围.
已知函数
(1)当时,求
的单调区间;
(2)若,设
是函数
的两个极值点,且
,记
分别为
的极大值和极小值,令
,求实数
的取值范围.
某厂家准备在2013年12月份举行促销活动,依以往的数据分析,经测算,该产品的年销售量万件(假设该厂生产的产品全部销售),与年促销费用
万元
近似满足
,如果不促销,该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入10万元,每生产1万件该产品需要再投入16万元.厂家将每件产品的销售价格规定为每件产品成本的1.5倍.(产品成本包括固定投入和再投入两部分资金).
(1)将2013年该产品的年利润万元表示为年促销费用
万元的函数;
(2)该厂家2013年的年促销费用投入为多少万元时,该厂家的年利润最大?并求出年最大利润.