游客
题文

已知抛物线 C : y 2 = 4 x 的焦点为 F ,过点 K - 1 , 0 的直线 l C 相交于 A B 两点,点 A 关于 x 轴的对称点为 D .
(Ⅰ)证明:点 F 在直线 B D 上;
(Ⅱ)设 F A · F B = 8 9 ,求 B D K 的内切圆 M 的方程 .

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本小题满分14分)某商店根据以往某种玩具的销售记录,绘制了日销售量的频率分布直方图,如图所示,将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立

(1)估计日销售量的众数;
(2)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;
(3)用表示在未来3天里日销售量不低于100个的天数,求随机变量的分布列,期望及方差.

(本小题满分12分)如图,已知是圆的直径,是⊙上一点,且的中点,的中点

(1)求证:平面
(2)求证:平面
(3)求与平面所成角的大小

(本小题满分12分)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:

时间x
1
2
3
4
5
命中率y
0.4
0.5
0.6
0.6
0.4


(1)求小李这5天的平均投篮命中率;
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.

(本小题满分14分)已知函数,其中常数.
(Ⅰ)当时,求函数的极值点;
(Ⅱ)证明:对任意恒成立;
(Ⅲ)对于函数图象上的不同两点,如果在函数图象上存在点(其中),使得在点M处的切线∥AB,则称直线AB存在“伴侣切线”.特别地,当,又称直线AB存在“中值伴侣切线”.
试问:当时,对于函数图象上不同两点A、B,直线AB是否存在“中值伴侣切线”,并证明你的结论.

(本小题满分12分)已知椭圆)的长半轴长为2,离心率为,左右焦点分别为

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号