已知数列满足
,
.
(1)计算;
(2)求数列的通项公式;
(3)已知,设
是数列
的前
项积,若
对
恒成立,求实数m的范围。
在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)求异面直线AE与CD所成角的余弦值.
已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC
已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小
已知数列的前
项和为
,且
=
,数列
中,
,点
在直线
上.(I)求数列
的通项
和
;
(II) 设,求数列
的前n项和
,并求满足
的最大正整数
.
已知a∈R,解关于x的不等式ax2-(a+1)x+1<0.