(本小题满分12分)
甲、乙两人进行一场乒乓球比赛,根据以往比赛的胜负情况知道,每一局比赛甲胜的概率0.6,乙胜的概率为0.4,本场比赛采用三局两胜制。
(1)求甲获胜的概率.
(2)设ξ为本场比赛的局数,求ξ的概率分布和数学期望.
(本小题满分12分)
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=—1.
(1)试求常数a、b、c的值;
(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由。
圆柱形容器,其底面直径为2m,深度为1 m,盛满液体后以0.01m3/s的速率放出,求液面高度的变化率.
已知函数,求
的单调区间。
(本小题12分)
如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。
|
(1)证明:AB1⊥BC1;
(2)求点B到平面AB1C1的距离;(本小题12分)
已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为.
(1)求椭圆的标准方程.
(2)斜率为1的直线与椭圆交于A、B两点,O为原点,当△AOB的面积最大时,求直线
的方程.