(本小题满分12分)
|
如图,把边长为a的正六边形纸板剪去相同的六个角,做成一个底面为正六边形的无盖六棱柱盒子,设其高为h,体积为V(不计接缝).
(1)求出体积V与高h的函数关系式并指出其定义域;已知向量a=(cosx,-),b=(
sinx,cos2x),x∈R,设函数f(x)=a·b.
(1)求f(x)的最小正周期.
(2)求f(x)在[0,]上的最大值和最小值.
已知圆:
,过定点
作斜率为1的直线交圆
于
、
两点,
为线段
的中点.
(1)求的值;
(2)设为圆
上异于
、
的一点,求△
面积的最大值;
(3)从圆外一点向圆
引一条切线,切点为
,且有
, 求
的最小值,并求
取最小值时点
的坐标.
圆内有一点
,
为过点
且倾斜角为
的弦.
(1)当时,求
;
(2)当弦被点
平分时,求出直线
的方程;
(3)设过点的弦的中点为
,求点
的坐标所满足的关系式.
已知△中,
,
,
平面
,
,
、
分别是
、
上的动点,且
.
(1)求证:不论为何值,总有平面
平面
;
(2)当为何值时,平面
平面
?
已知多面体中, 四边形
为矩形,
,
,平面
平面
,
、
分别为
、
的中点,且
,
.
(1)求证:平面
;
(2)求证:平面
;
(3)设平面将几何体
分成的两个锥体的体积分别为
,
,求
的值.