已知函数,其图象在点(1,
)处的切线方程为
(1)求a,b的值;
(2)求函数的单调区间,并求出
在区间[—2,4]上的最大值。
某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表(总分:150分):
甲班
成绩 |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
4 |
20 |
15 |
10 |
1 |
乙班
成绩 |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
1 |
11 |
23 |
13 |
2 |
(1)现从甲班成绩位于内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果;
(2)根据所给数据可估计在这次测试中,甲班的平均分是101.8,请你估计乙班的平均分,并计算两班平均分相差几分;
(3)完成下面2×2列联表,你认为在犯错误的概率不超过0.025的前提下, “这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由。
成绩小于100分 |
成绩不小于100分 |
合计 |
|
甲班 |
![]() |
26 |
50 |
乙班 |
12 |
![]() |
50 |
合计 |
36 |
64 |
100 |
附:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.
(本小题满分13分)已知椭圆C1:的离心率为
,直线l: y-=x+2与.以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(ll)设椭圆C1的左焦点为F1,右焦点为F2,直线l2过点F价且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(III)过椭圆C1的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形,求直线m的斜率k的取值范围.
本小题满分12分)设M是由满足下列条件的函数f (x)构成的集合:①方程f (x)一x=0有实根;②函数的导数满足0<
<1.
(1)若函数f(x)为集合M中的任意一个元素,证明:方程f(x)一x=0只有一个实根;
(2)判断函数是否是集合M中的元素,并说明理由;
(3)设函数f(x)为集合M中的任意一个元素,对于定义域中任意,
证明: