(本小题满分12分)如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
(I)证明:AB1⊥BC1;
(II)求点B到平面AB1C1的距离;
(III)求二面角C1—AB1—A1的大小.
求直线的倾斜角
.(若
,则有
)
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。
(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD
如图,在梯形ABCD中,AB∥CD,,
,平面
平面
,四边形
是矩形,
,点
在线段
上。
(1)求证:平面
;
(2)当为何值时,
∥平面
?写出结论,并加以证明;
(3)当EM为何值时,AM⊥BE?写出结论,并加以证明。
【改编】在正四棱柱中,已知底面
的边长为2,点P是
的中点,且
.
(1)求的长;
(2)求点到平面
的距离.
【原创】(1),已知:,且满足
,求
的最小值;
(2),已知:,且满足
,求
的最大值.