某工厂生产甲乙两种产品,已知生产每吨甲、乙两种产品所需的煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如下表所示:
|
甲产品(每吨) |
乙产品(每吨) |
资源限额(每天) |
煤(t) |
9 |
4 |
360 |
电力(kw·h) |
4 |
5 |
200 |
劳力(个) |
3 |
10 |
300 |
利润(万元)[来 |
6 |
12 |
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
已知{an}是正项数列,a1=1,且点(,an+1)(n∈N*)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)若列数{bn}满足b1=1,bn+1=bn+2,求证:bnbn+2<b
.
设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.
设a为实数,函数f(x)=ex﹣2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2﹣1且x>0时,ex>x2﹣2ax+1.
在正项数列{an}中,a1=1,点An()在曲线y2﹣x2=1上,数列{bn}中,点(bn,Tn)在直线y=﹣
x+1上,其中Tn是数列{bn}的前n项和.
(1)求数列{an},{bn}的通项公式an,bn;
(2)若cn=an•bn,数列{cn}的前n项和Sn.
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣
.
(Ⅰ)求a和sinC的值;
(Ⅱ)求cos(2A+)的值.