设轴、
轴正方向上的单位向量分别是
、
,坐标平面上点
、
分别满足下列两个条件:
①且
;
②且
.(其中
为坐标原点)
(I)求向量及向量
的坐标;
(II)设,求
的通项公式并求
的最小值;
(III)对于(Ⅱ)中的,设数列
,
为
的前n项和,证明:对所有
都有
.
(如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P﹣ABCD的高,且,E、F分别是BC、AP的中点.
(1)求证:EF∥平面PCD;
(2)求三棱锥F﹣PCD的体积.
如图,在三棱柱中, D是 AC的中点。
求证://平面
如图所示,在正方体ABCD﹣A1B1C1D1中,棱长AB=1.
(Ⅰ)求异面直线A1B与 B1C所成角的大小;(Ⅱ)求证:平面A1BD∥平面B1CD1.
一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积和体积.
已知函数.
(Ⅰ)若不等式的解集为
,求实数
的值;
(Ⅱ)在(Ⅰ)的条件下,若对一切实数
恒成立,求实数
的取值范围.