游客
题文

(本小题满分14分)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点。
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)求点C到平面A1BD的距离.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知是椭圆上两点,点M的坐标为.
(1)当两点关于轴对称,且为等边三角形时,求的长;
(2)当两点不关于轴对称时,证明:不可能为等边三角形.

已知曲线.
(1)若曲线C在点处的切线为,求实数的值;
(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.

如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,DAC中点,,延长AEBCF,将ABD沿BD折起,使平面ABD平面BCD,如图2所示.

(1)求证:AE⊥平面BCD
(2)求二面角A–DC–B的余弦值.
(3)在线段上是否存在点使得平面?若存在,请指明点的位置;若不存在,请说明理由.

为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:

甲公司某员工A

乙公司某员工B
3
9
6
5
8
3
3
2
3
4
6
6
6
7
7






0
1
4
4
2
2
2


每名快递员完成一件货物投递可获得的劳务费情况如下:
甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;
(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.

已知函数,过两点的直线的斜率记为.
(1)求的值;
(2)写出函数的解析式,求上的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号