(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分)
甲题:
⑴若关于的不等式
的解集不是空集,求实数
的取值范围;
⑵已知实数,满足
,求
最小值.
乙题:
已知曲线C的极坐标方程是=4cos
。以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
是参数)。
⑴将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程;
⑵若过定点的直线
与曲线C相交于A、B两点,且
,试求实数
的值。
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等。
(1)求取出的两个球上标号为相邻整数的概率;
(2)求取出的两个球上标号之和能被3整除的概率.
如图,测量河对岸的塔高时,可以选与塔底
在同一水平面内的两个测点
.现测得
,并在点
测得塔顶
的仰角为
, 求塔高
(精确到
,
)
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设(
N*).
①证明: ;
② 求证:.
已知各项都不为零的数列的前n项和为
,
,向量
,其中
N*,且
∥
.
(Ⅰ)求数列的通项公式及
;
(Ⅱ)若数列的前n项和为
,且
(其中
是首项
,第四项为
的等比数列的公比),求证:
.
汕头二中拟建一座长米,宽
米的长方形体育馆.按照建筑要求,每隔
米(
,
为正常数)需打建一个桩位,每个桩位需花费
万元(桩位视为一点且打在长方形的边上),桩位之间的
米墙面需花
万元,在不计地板和天花板的情况下,当
为何值时,所需总费用最少?