已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的1个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(II)设为取出的4个球中红球的个数,求的分布列和数学期望
四棱锥中,底面是边长为8的菱形,,若,平面平面. (1)求四棱锥的体积; (2)求证:.
已知集合,,如果,求实数的取值范围.
设函数的定义域为集合,函数的定义域为集合.求: (1)集合,; (2)集合.
已知函数,. (1)时,证明:; (2),若,求的取值范围.
如图,在平面直角坐标系中,离心率为的椭圆()的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于,两点,直线,分别与轴交于,两点.当直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号