如图8所示,光滑坡道顶端距水平面高度为h,质量为m的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端恰位于滑道的末端O点.已知在OM段,物块A与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:
(1)物块滑到O点时的速度大小;
(2)弹簧为最大压缩量d时的弹性势能(设弹簧处于原长时弹性势能为零)
(3)若物块A能够被弹回到坡道上,则它能够上升的最大高度是多少?
如图(甲)所示,一对平行光滑轨道放置在水平面上,两轨道相距l=1m,两轨道之间用R=3Ω的电阻连接,一质量m=0.5kg、电阻r=1Ω的导体杆与两轨道垂直,静止放在轨道上,轨道的电阻可忽略不计。整个装置处于磁感应强度B=2T的匀强磁场中,磁场方向垂直轨道平面向上,现用水平拉力沿轨道方向拉导体杆,拉力F与导体杆运动的位移s间的关系如图(乙)所示,当拉力达到最大时,导体杆开始做匀速运动,当位移s=2.5m时撤去拉力,导体杆又滑行了一段距离s'后停下,在滑行s'的过程中电阻R上产生的焦耳热为12J。求:
(1)拉力F作用过程中,通过电阻R上电量q;
(2)导体杆运动过程中的最大速度vm;
(3)拉力F作用过程中,电阻R上产生的焦耳热。
图(甲)图(乙)
如图所示,水平地面上有一辆固定有竖直光滑绝缘管的小车,管的底部有一质量m=0.2g、电荷量q=8×10-5C的小球,小球的直径比管的内径略小.在管口所在水平面MN的下方存在着垂直纸面向里、磁感应强度B1= 15T的匀强磁场,MN面的上方还存在着竖直向上、场强E=25V/m的匀强电场和垂直纸面向外、磁感应强度B2=5T的匀强磁场.现让小车始终保持v=2m/s的速度匀速向右运动,以带电小球刚经过场的边界PQ为计时的起点,测得小球对管侧壁的弹力FN随高度h变化的关系如图所示.g取10m/s2,不计空气阻力.求:
(1)小球刚进入磁场B1时的加速度大小a;
(2)绝缘管的长度L;
(3)小球离开管后再次经过水平面MN时距管口的距离△x.
![]() |
如图,传送带与水平面倾角θ=37°,以10米/秒的速率逆时针转动,在传送带上端A处轻轻放一质量m=2千克的物块,它与传送带间的摩擦系数μ=0.5。若两轮间传送带的长度L=29米。(g取10米/秒2, sin37°=0.6,cos37°=0.8)求:(1)物块从传送带上端A运动到 B处所用时间和到B处时的速度大小。(2)物块从传送带上端A运动到 B处的过程中摩擦力对物块所做的功。(3) 物块从传送带上端A运动到 B处的过程中物块和传送带所产生的总热量。
如图甲所示,质量mB=1kg的平板小车B在光滑水平面上以v1=1m/s的速度向左匀速运动.当t=0时,质量mA=2kg的小铁块A以v2=2 m/s的速度水平向右滑上小车,A与小车间的动摩擦因数为μ=0.2。若A最终没有滑出小车,取水平向右为正方向,g=10m/s2,求:
①A在小车上停止运动时,小车的速度大小
②在图乙所示的坐标纸中画出1.5 s内小车B运动的速度一时间图象.
两金属杆ab和cd长均为l,电阻均为R,质量分别为M和m,M>m,用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧,两金属杆都处在水平位置,如图4-93所示,整个装置处在一个与回路平面相垂直的匀强磁场中,磁感应强度为B.若金属杆ab正好匀速向下运动,求其运动的速度.