在平面直角坐标系xOy中,已知曲线的方程为:
. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,若直线
的极坐标方程为
.
(Ⅰ)试写出直线的和曲线
的直角坐标方程;
(Ⅱ)在曲线上求一点P,使点P到直线
的距离最大,并求出此最大值.
函数.
(1)求的周期;
(2)在
上的减区间;
(3)若,
,求
的值.
已知函数.
(Ⅰ)求在
处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若,求证:
.
已知.
(Ⅰ)当时,判断
的奇偶性,并说明理由;
(Ⅱ)当时,若
,求
的值;
(Ⅲ)若,且对任何
不等式
恒成立,求实数
的取值范围.
某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:
(Ⅰ)由表中数据直观分析,节能意识强弱是否与人的年龄有关?
(Ⅱ)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?
(Ⅲ)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.
已知的内角A、B、C所对的边为
,
,
,且
与
所成角为
.
(Ⅰ)求角B的大小;
(Ⅱ)求的取值范围.