(本小题满分14分)
已知命题:方程
有两个不相等的负实数根;命题
:函数
无零点.
(1)若为真命题,求实数
的取值范围;
(2)若或
为真,
且
为假,求实数
的值的集合.
在△ABC中,内角A、B、C所对的边分别是a、b、c,已知c=2,C=
(1)若△ABC的面积为,求a、b;
(2)若sinB=2sinA,求△ABC的面积。
(本小题共12分)
设函数,方程
有唯一解,其中实数
为常数,
,
(1)求的表达式;
(2)求的值;
(3)若且
,求证:
(本小题共12分)
设,
点在
轴的负半轴上,点
在
轴上,且
.
(1)当点在
轴上运动时,求点
的轨迹
的方程;
(2)若,是否存在垂直
轴的直线
被以
为直径的圆截得的弦长恒为定值?若存在,求出直线
的方程;若不存在,请说明理由.
(本小题满分12分)
设数列的各项均为正数,若对任意的正整数
,都有
成等差数列,且
成等比数列.
(Ⅰ)求证数列是等差数列;
(Ⅱ)如果,求数列错误!不能通过编辑域代码创建对象。的前错误!不能通过编辑域代码创建对象。项和。
(本小题满分12分)
三人独立破译同一份密码.已知三人各自破译出密码的概率分别为错误!不能通过编辑域代码创建对象。且他们是否破译出密码互不影响.
(Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.