(本小题满分12分)
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;
(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.
(12分)如图,矩形ABCD中,E是BC中点,DF⊥AE交AE延长线于F,AB="a" ,BC=b,
求证:DF=
(12分)已知A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若A∪B=A,求m的取值范围。
(10分) 已知函数在区间
上有最小值-2,求实数a 的值
已知数列满足:
,
,
为公差为4等差数列.数列
的前n项和为
,且满足
.
①求数列的通项公式
;
②试确定的值,使得数列
是等差数列;
③设数列满足:
,若在
与
之间插
入n个数,使得这个数组成一个公差为
的等差数列.
求证:……
。
铁路托运行李,从甲地到乙地,规定每张火车票托运行李不超过50公斤时,每公斤0.2元,超过50公斤时,超过部分按每公斤0.3元计算,(不足1公斤时按1公斤计费),试设计一个计算某人坐火车托运行李所需费用的算法,要求画出框图,并用基本语句写出算法。
(提示: INT(x)表示取不大于x的最大整数,如INT(3.5)="3" ,INT(6)=6)