已知直线:
过抛物线
的焦点.
(1)求抛物线方程;
(2)设抛物线的一条切线,若
∥
,求切点坐标.
(方法不唯一)
(本题12分)为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)
表1:施用新化肥小麦产量频数分布表
小麦产量 |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
10 |
35 |
40 |
10 |
5 |
表2:不施用新化肥小麦产量频数分布表
小麦产量 |
![]() |
![]() |
![]() |
![]() |
频数 |
15 |
50 |
30 |
5 |
(10)完成下面频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;
(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
表3:
小麦产量小于20kg |
小麦产量不小于20kg |
合计 |
|
施用新化肥 |
![]() |
![]() |
|
不施用新化肥 |
![]() |
![]() |
|
合计 |
![]() |
附:
![]() |
0.050 |
0.010 |
0.005 |
0.001 |
![]() |
3.841 |
6.635 |
7.879 |
10.828 |
(本题12分)某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x |
6 |
8 |
10 |
12 |
y |
2 |
3 |
5 |
6 |
(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y关于x的线性回归方程;(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.(相关公式:
,
)
(本题12分)已知在的展开式中,第
项的二项式系数与第2项的二项式系数的比为
.(1)求
的值;(2)求含
的项的系数;(3)求展开式中系数最大的项.
(本题10分)某校高三某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求分数在[90,100]之间的份数的数学期望
.
(本小题满分12分)设为奇函数,a为常数。
(1)求a的值;
(2)证明在区间
上为增函数;
(3)若对于区间上的每一个
的值,不等式
恒成立,求实数m的取值范围。