已知以函数
的图象上的点
为切点的切线的倾斜角为
.
(1)求
的值;
(2)是否存在正整数
,使不等式
对于
恒成立?若存在,求出最小的正整数
,若不存在,说明理由;
(3)对于
,比较
与
的大小.
(本小题满分14分)
如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.
(本小题满分14分)(1)一个圆与
轴相切,圆心在直线
上,且被直线
所截得的弦长为
,求此圆方程。
(2)已知圆
,直线
,求与圆
相切,且与直线
垂直的直线方程。
(本小题满分14分)
在
中,角
的对边分别为
,
,
,
的面积为
.
(Ⅰ)求
的值;
(Ⅱ)求
的值.
(本题满分14分) 已知
是方程
的两个不等实根,函数
的定义域为
.
⑴当
时,求函数
的值域;
⑵证明:函数
在其定义域
上是增函数;
⑶在(1)的条件下,设函数
,
若对任意的
,总存在
,使得
成立,
求实数
的取值范围.
(本小题满分15分) 已知动圆
过定点
,且与直线
相切,椭圆
的对称轴为坐标轴,一个焦点是
,点
在椭圆
上.
(Ⅰ)求动圆圆心
的轨迹
的方程及其椭圆
的方程;
(Ⅱ)若动直线
与轨迹
在
处的切线平行,且直线
与椭圆
交于
两点,问:是否存在着这样的直线
使得
的面积等于
?如果存在,请求出直线
的方程;如果不存在,请说明理由.