(本题满分12分)
函数f(x)=x3+bx2+cx+d图象经过点(0,2),且在x=-1处的切线方程为6x - y+7=0.
(1)求函数f(x)解析式;
(2)求函数 f(x)的单调递减区间;
(3)求函数f(x)在[0,2]上的最大值和最小值.
已知函数
满足满足
;
(1)求
的解析式及单调区间;
(2)若
,求
的最大值.
设抛物线
的焦点为
,准线为
,
,已知以
为圆心,
为半径的圆
交
于
两点;
(1)若
,
的面积为
;求
的值及圆
的方程;
(2)若
三点在同一直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
距离的比值.
如图,直三棱柱 中, , 是棱 的中点, .
(1)证明:
(2)求二面角 的大小.
某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进
枝玫瑰花,
表示当天的利润(单位:元),求
的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
已知 分别为 三个内角 的对边,
(1)求
(2)若 , 的面积为 ,求 .