(满分12分)
某大学毕业生参加某单位的应聘考试,考核依次分为笔试,面试、实际操作共三轮进行,规定只有通过前一轮考核才能进入下一轮考核,否则被淘汰,三轮考核都通过才能被正式录用,设该大学毕业生通过一、二、三轮考核的概率分别为,且各轮考核通过与否相互独立。
①求该大学毕业生进入第三轮考核的概率;
②设该大学毕业生在应聘考核中考核轮数为X,求X的概率分布列及期望和方差。
设,
分别为椭圆
的左、右焦点,过
的直线
与椭圆
相交于
,
两点,直线
的倾斜角为
,
到直线
的距离为
.
(1)求椭圆的焦距;
(2)如果,求椭圆
的方程.
已知等差数列的前
项和为
,
(1)求数列的通项公式
与前
项和
;
(2)设求证:数列
中任意不同的三项都不可能成为等比数列
如图,四棱锥中,底面
是
的菱形,
侧面是边长为2的正三角形,且与底面
垂直,
为
的中点.
(1)求证:平面
;
(2)求二面角的余弦值.
某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.
(1) 随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为,求
的数学期望;
(3)随机选取3件产品,求这三件产品都不能通过检测的概率.
已知函数f(x)=sin2x+sinxcosx-
(xÎR).
(1)若,求f(x)的最大值;
(2)在△ABC中,若A<B,f(A)=f(B)=,求
的值.