某市为了了解“陕西分类招生考试”宣传情况,从四所中学的学生当中随机抽取50名学生参加问卷调查,已知
四所中学各抽取的学生人数分别为15,20,10,5.
(Ⅰ)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;
(Ⅱ)在参加问卷调查的名学生中,从来自
两所中学的学生当中随机抽取两名学生,用
表示抽得
中学的学生人数,求
的分布列及期望值.
公差不为0的等差数列中,
且
成等比数列.
(I)求的通项公式;
(Ⅱ)设试比较
与
的大小,并说明理由.
已知函数的周期
(Ⅰ)若直线与函数
的图象在
是两个公共点,其横坐标分别为
求
的值;
(Ⅱ)已知三角形的内角
的对边分别为
且
若向量
共线,求
的值.
已知函数(
),且函数图象过原点.
(Ⅰ)求函数的单调区间;
(Ⅱ)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;
(Ⅲ)若,当
时,不等式
恒成立,求a的取值范围.
如图,已知椭圆Γ:+
=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的一个动点,满足|
|=2a.点P是线段F1Q与该椭圆的交点,点M在线段F2Q上,且满足
·
=0,|
|≠0.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设不过原点O的直线l与轨迹C交于A,B两点,若直线OA,AB,OB的斜率依次成等比数列,求△OAB面积的取值范围;
(Ⅲ)由(Ⅱ)求解的结果,试对椭圆Γ写出类似的命题.(只需写出类似的命题,不必说明理由)
如图,三棱柱中,
平面
,
,
, 点
在线段
上,且
,
.
(Ⅰ)求证:直线与平面
不平行;
(Ⅱ)设平面与平面
所成的锐二面角为
,若
,求
的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面
,求直线
与
所成的角的余弦值.