已知双曲线的焦点与椭圆
的焦点重合,且该椭圆的长轴长为
,
是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:
,直线
与
的斜率之积为
,求证:存在定点
,
使得为定值,并求出
的坐标;
(3)若在第一象限,且点
关于原点对称,点
在
轴的射影为
,连接
并延长交椭圆于
点,求证:以
为直径的圆经过点
.
设函数
(1)若关于x的不等式在
有实数解,求实数m的取值范围;
(2)设,若关于x的方程
至少有一个解,求p的最小值.
(3)证明不等式:
如图,四棱锥中,底面
为平行四边形,
,
,
⊥底面
.
(1)证明:平面平面
;
(2)若二面角为
,求
与平面
所成角的正弦值.
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求
的分布列和数学期望.
若的图像与直线
相切,并且切点横坐标依次成公差为
的等差数列.
(1)求和
的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若
是函数
图象的一个对称中心,且a=4,求
ABC面积的最大值.
设函数
(1)若时,解不等式
;
(2)若不等式的对一切
恒成立,求实数
的取值范围