已知双曲线的焦点与椭圆
的焦点重合,且该椭圆的长轴长为
,
是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:
,直线
与
的斜率之积为
,求证:存在定点
,
使得为定值,并求出
的坐标;
(3)若在第一象限,且点
关于原点对称,点
在
轴的射影为
,连接
并延长交椭圆于
点,求证:以
为直径的圆经过点
.
(本小题满分13分)已知,函数
,
.
(1)判断函数在
区间
上的单调性(其中
为自然对数的
底数);
(2)是否存在实数,使曲线
在点
处的切线与
轴垂直
若存在,求出的值;若不存在,请说明理由.
本小题满分12分)如图菱形的边长为
,
,
.将菱形
沿对角线
折起,得到三棱锥
,
点
是棱
的中点,
.
(1) 求证:平面
;
(2) 求证:平面平面
;
(3) 求三棱锥的体积.
(本小题满分12分)已知直线:
与直线
:
互相平行,经过点
的直线
与
,
垂直,且被
,
截得的线段长为
,试求直线
的方程.
(本小题满分12分)已知函数
.
(1)设,且
,求
的值;
(2)在△ABC中,AB=1,,且△ABC面积为
,求sinA+sinB的值.
题号:04
“矩阵与变换和坐标系与参数方程”模块(10分)
在极坐标系中,极点为A,已知“葫芦”型封闭曲线由圆弧ACB和圆弧BDA组成.已知
(1)求圆弧ACB和圆弧BDA的极坐标方程;
(2)求曲线围成的区域面积.