(本小题共14分)
已知椭圆短轴的一个端点
,离心率
.过
作直线
与椭圆交于另一点
,与
轴交于点
(不同于原点
),点
关于
轴的对称点为
,直线
交
轴于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求 的值.
(本小题满分13分)
已知函数,其中
是常数.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)若存在实数,使得关于
的方程
在
上有两个不相等的实数根,求
的取值范围.
(本小题满分14分)
在四棱锥中,底面
是直角梯形,
∥
,
,
,平面
平面
.
(Ⅰ)求证:平面
;
(Ⅱ)求平面和平面
所成二面角(小于
)的大小;
(Ⅲ)在棱上是否存在点
使得
∥平面
?若存在,求
的值;若不存在,请说明理由.
(本小题满分13分)
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求
的分布列和数学期望.
(本小题满分13分)
在中,角
,
,
所对的边分别为
,
,
,
,
.
(Ⅰ)求及
的值;(Ⅱ)若
,求
的面积.
已知椭圆经过点
,
为坐标原点,平行于
的直线
在
轴上的截距为
.
(1)当时,判断直线
与椭圆的位置关系(写出结论,不需证明);
(2)当时,
为椭圆上的动点,求点
到直线
距离的最小值;
(3)如图,当交椭圆于
、
两个不同点时,求证:直线
、
与
轴始终围成一个等腰三角形.