(本小题满分12分)已知
函数
恰有一个极大值点和一个极小值点,其中的一个极值点是
(I)求函数的另一个极值点;
(II)记函数的极大值为M、极小值为m,若
的取值范围.
(本小题满分12分)
某家电生产企业市场营销部对本厂生产的某种电器进行了市场调查,发现每台的销售利润与该电器的无故障使用时间(单位:年)有关.若
,则销售利润为
元;若
,则销售利润为
元;若
,则销售利润为
元,设每台该种电器的无故障使用时间
,
,
这三种情况发生的概率分别是
,又知
是方程
的两个根,且
.
(1)求的值;
(2)记表示销售两台该种电器的销售利润总和,求
的分布列及期望.
(本小题满分12分)
已知向量,
,函数
的图象与直线
的相邻两个交点之间的距离为
.
(Ⅰ)求函数在
上的单调递增区间;
(Ⅱ)将函数的图象向右平移
个单位,得到函数
的图象.若
在
上至少含有
个零点,求
的最小值.
设椭圆的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(1)求椭圆的离心率;
(2)若过三点的圆与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于
,求实数
的取值范围.
(本小题满分13分)已知函数(t∈R) .
(Ⅰ)若曲线在
处的切线与直线
平行,求实数
的值;
(Ⅱ)若对任意的,
恒成立,求实数
的取值范围.
已知数列为等比数列,其前
项和为
,已知
,且对于任意的
有
成等差数列;
(Ⅰ)求数列的通项公式;
(Ⅱ)已知(
),求
.