(1)已知关于的不等式
在
上恒成立,求实数
的最小值;
(2)已知,求证:
.
如图是一个直三棱柱(以A1B1C1为底面)被一平面
所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且设点O是AB的中点。
(1)证明:OC∥平面A1B1C1;
(2)求异面直线OC与AlBl所成角的正切值。
已知数列满足
,则(1)当
时,求数列
的前
项和
;(2)当
时,证明数列
是等比数列。
已知的周长为
,且
,
(Ⅰ)求边AB的长;(Ⅱ)若的面积为
,求角C的度数。
某高速公路收费站入口处的安全标识墩如图1所示。墩的上半部分是正四棱锥,下半部分是长方体
。图2、图3分别是该标识墩的正(主)视图和俯视图。
图1图2图3
(1)请在正视图右侧画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积;
如图,椭圆的左焦点为
,过点
的直线交椭圆于
,
两点.当直线
经过椭圆的一个顶点时,其倾斜角恰为
.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设线段的中点为
,
的中垂线与
轴和
轴分别交于
两点,
记△的面积为
,△
(
为原点)的面积为
,求
的取值范围.