(本题满分16分) 本题共有3个小题,第1小题满分7分,第2小题满分7分,第3小题满分2分.
设直线交椭圆
于
两点,交直线
于点
.
(1)若为
的中点,求证:
;
(2)写出上述命题的逆命题并证明此逆命题为真;
(3)请你类比椭圆中(1)、(2)的结论,写出双曲线中类似性质的结论(不必证明).
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知,
,满足
.
(1)将表示为
的函数
,并求
的最小正周期;
(2)已知分别为
的三个内角
对应的边长,若
对所有
恒成立,且
,求
的取值范围.
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知数列满足
.
(1)设,证明:数列
为等差数列,并求数列
的通项公式;
(2)求数列的前
项和
.
(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱
的长为8,且垂直于底面,点
分别是
的中点.求
(1)异面直线与
所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.
(本小题满分12分)
设是等差数列,
是各项都为正数的等比数列,且
,
,
(Ⅰ)求,
的通项公式;
(Ⅱ)求数列的前n项和
.