游客
题文

(本小题满分14分)



E

 

如图,四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面





A

 

所成的角为45°,底面ABCD为直角梯形,





D

 





C

 



B

 

 (Ⅰ)求证:平面⊥平面

(Ⅱ)在棱上是否存在一点,使?若存在,请确定E点的位置;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?

·大纲理)已知双曲线C:(a>0,b>0)的左、右焦点分别为,离心率为3,直线y=2与C的两个交点间的距离为.
(1)求a,b;
(2)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:成等比数列.

已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点.

(1)求椭圆的方程;
(2)求面积的最大值,并求此时直线的方程.

已知点直线为平面上的动点,过点作直线的垂线,垂足为,且.
(1)求动点的轨迹方程;
(2)是轨迹上异于坐标原点的不同两点,轨迹在点处的切线分别为,且
相交于点,求点的纵坐标.

已知双曲线的中心为原点,左、右焦点分别为,离心率为,点是直线上任意一点,点在双曲线上,且满足.
(1)求实数的值;
(2)证明:直线与直线的斜率之积是定值;
(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点,在线段上去异于点的点,满足,证明点恒在一条定直线上.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号