如图,已知 A P 是 ⊙ O 的切线, P 为切点, A C 是⊙O的割线,与 ⊙ O 交于 B 、 C 两点,圆心 O 在 ∠ P A C 的内部,点 M 是 B C 的中点.
(Ⅰ)证明 A , P , O , M 四点共圆; (Ⅱ)求 ∠ O A M + ∠ A P M 的大小.
(13分)已知数列{}的前n项和Sn=--+2(n为正整数). (1)令=,求证数列{}是等差数列,并求数列{}的通项公式; (2)令=,若Tn=c1+c2+…+cn, 求Tn。
(12分) 设,. (1)求在上的值域; (2)若对于任意,总存在,使得成立,求的取值范围.
(12分) 如图,正三棱柱中,是的中点, (1)求证:∥平面; (2)求二面角的大小.
(12分) 已知的面积其中分别为角所对的边. (1)求角的大小;(2)若,求的最大值.
(12分)已知p:,q:x2-2x+1-m2≤0(m>0).若¬p是¬q的充分不必要条件,求实数m的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号