已知集合
,其中
,由
中的元素构成两个相应的集合:
,
.其中是有序数对,集合
和
中的元素个数分别为
和
.若对于任意的
,总有
,则称集合
具有性质
.
(I)检验集合
与
是否具有性质
并对其中具有性质
的集合,写出相应的集合
和
;
(II)对任何具有性质
的集合
,证明:
;
(III)判断
和
的大小关系,并证明你的结论.
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,是
的中点.侧视图是直角梯形,俯视图是等腰直角
三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积;
(Ⅱ)求证:EM∥平面ABC;
(Ⅲ) 试问在棱DC上是否存在点N,使NM⊥平面?若存在,确定点N的位置;
若不存在,请说明理由.
已知某几何体的三视图如下图所示,其中左视图是边长为2的正三角形,主视图是矩形且,俯视图中
分别是所在边的中点,设
为
的中点.
(1)求其体积;(2)求证:;
(3)边上是否存在点
,使
?若不存在,说明理由;若存在,请证明你的结论.
求直线被圆
所截得的弦长。
设是把坐标平面上的点的横坐标伸长到
倍,纵坐标伸长到
倍的伸压变换.求逆矩阵
以及椭圆
在
的作用下的新曲线的方程.
求曲线围成的平面图形的面积.