注意:请考生在(1)、(2)、(3)三题中任选一题做答,如果多做,则按所做的第一题计分
(1)如图,AC为⊙O的直径,弦BD⊥AC于点P,PC=2,PA=8,
则的值为 _____.
(2)在极坐标系中,圆的圆心的极坐标是 _____.
(3)不等式的解集为 _____.
(本小题满分12分)设是定义在
上的奇函数,函数
与
的图象关于
轴对称,且当
时,
.
(1)求函数的解析式;
(2)若对于区间上任意的
,都有
成立,求实数
的取值范围.
如图,O为坐标原点,点F为抛物线C1:的焦点,且抛物线C1上点P处的切线与圆C2:
相切于点Q.
(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;
(Ⅱ)当正数变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求
的最小值.
(本小题满分12分)如图甲,⊙的直径
,圆上两点
在直径
的两侧,使
,
.沿直径
折起,使两个半圆所在的平面互相垂直(如图乙),
为
的中点,
为
的中点.
为
上的动点,根据图乙解答下列各题:
(1)求点到平面
的距离;
(2)在弧上是否存在一点
,使得
∥平面
?若存在,试确定点
的位置;若不存在,请说明理由.
(本小题满分12分)已知函数(
、
为常数).
(1)若,解不等式
;
(2)若,当
时,
恒成立,求
的取值范围.
(本小题满分12分)如图,在平面直角坐标系中,点
在单位圆
上,
,且
.
(1)若,求
的值;
(2)若也是单位圆
上的点,且
.过点
分别做
轴的垂线,垂足为
,记
的面积为
,
的面积为
.设
,求函数
的最大值.