(本题14分)
如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点
(1)求异面直线A1M和C1D1所成的角的正切值;
(2)证明:直线BM⊥平面A1B1M1
向量=
,
=
,设函数
=
(a∈
,且a为常数).
(1)若为任意实数,求
的最小正周期;
(2)若在
上的最大值与最小值之和为7,求
的值.
为积极配合湛江市2015年省运会志愿者招募工作,某大学数学学院拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.
(1)求当选的4名同学中恰有1名男同学的概率;
(2)求当选的4名同学中至少有3名女同学的概率.
已知,
,
与
的夹角为
.
求(1);(2)
.
若,
是第四象限角,求
的值.
为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:
甲 |
27 |
38 |
30 |
37 |
35 |
31 |
乙 |
33 |
29 |
38 |
34 |
28 |
36 |
(1)分别求甲、乙两运动员最大速度
的平均数,
及方差
,
;
(2)根据(1)所得数据阐明:谁参加这项重大比赛更合适.