某校高三的某次数学测试中,对其中100名学生的成绩进行分析,按成绩分组,得到的频率分布表如下:
组号 |
分组 |
频数 |
频率 |
第1组 |
![]() |
15 |
① |
第2组 |
![]() |
② |
0.35 |
第3组 |
![]() |
20 |
0.20 |
第4组 |
![]() |
20 |
0.20 |
第5组 |
![]() |
10 |
0.10 |
合计 |
|
100 |
1.00 |
(1)求出频率分布表中①、②位置相应的数据;
(2)为了选拔出最优秀的学生参加即将举行的数学竞赛,学校决定在成绩较高的第3、4、5组中分层抽样取5名学生,则第4、5组每组各抽取多少名学生?
(3)为了了解学生的学习情况,学校又在这5名学生当中随机抽取2名进行访谈,求第4组中至少有一名学生被抽到的概率是多少?
已知中,a,b, c 为角A,B,C 所对的边,
.
(1)求cos A的值;
(2)若的面积为
,求b ,c 的长.
设函数,其中
.
(1)当时,求不等式
的解集;
(2)若不等式的解集为
,求
的值.
已知曲线的参数方程为
(
为参数),曲线
的极坐标方程为
.
(1)将曲线的参数方程化为普通方程,将曲线
的极坐标方程化为直角坐标方程;
(2)曲线,
是否相交,若相交请求出公共弦的长,若不相交,请说明理由.
如图,A,B,C,D四点在同一圆上,与
的延长线交于点
,点
在
的延长线上.
(1)若,求
的值;
(2)若,证明:
.
已知函数.
(1)若函数在
处取得极值,求实数
的值;
(2)若函数在定义域内单调递增,求实数
的取值范围;
(3)当时,关于
的方程
在
上有两个不相等的实数根,求实数
的取值范围.