(本小题共12分)已知函数
(I)若x=1为的极值点,求a的值;
(II)若的图象在点(1,
)处的切线方程为
,求
在区间[-2,4]上的最大值;
数列满足
,其中
求值,猜想
,并用数学归纳法加以证明。
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=
AB=1,M是PB的中点。
(1)求直线AC与PB所成角的余弦值;
(2)求面AMC与面PMC所成锐二面角的大小的余弦值。
(本小题满分14分) 如图,直角梯形ABCD中,∠,AD∥BC,AB=2,AD=
,BC=
,椭圆F以A、B为焦点且过点D.
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)若点E满足,是否存在斜率
两点,且
,若存在,求K的取值范围;若不存在,说明理由。
(本小题满分12分) 如图正三棱柱各条棱长均为1,D是侧棱
中点。
(I)求证:平面
(II)求平面
(Ⅲ)求点
(本小题满分12分)
已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正。某射手若使用其中校正过的枪,每射击一次击中目标的概率为;若使用其中未校正的枪,每射击一次击中目标的概率为
,假定每次射击是否击中目标相互之间没有影响。
(I)若该射手用这2支已经试射校正过的枪各射击一次,求目标被击中的次数为偶数的概率;
(II)若该射手用这3支抢各射击一次,求目标至多被击中一次的概率。