(16分) 如图所示,质量m =" 2.0" kg的木块静止在高h =" 1.8" m的水平台上,木块距平台右边缘10 m,木块与平台间的动摩擦因数µ= 0.2。用水平拉力F = 20N拉动木块,当木块运动到水平末端时撤去F。不计空气阻力,g取10m/s2。求:
(1)木块离开平台时的速度大小;
(2)木块落地时距平台边缘的水平距离。
一列简谐横波沿x轴正方向传播,波速为lm/s,t=0时刻波形如图所示。在x=1.0m处有一质点M,求:
①质点M开始振动的方向及振动频率;
②从t=0时刻开始,经过多长时间质点M第二次到达波峰?
一列简谐横波沿x轴正方向传播,周期为T=2s,t=0时刻的波形如图所示。此刻,波刚好传到处,求:坐标
处的质点,经多长时间第一次经过平衡位置向y轴负方向运动?
渔船常利用超声波来探测远处鱼群的方位,已知某超声波的频率为1.0×105 Hz,某时刻该超声波在水中传播的波动图象如图所示.
①从该时刻开始计时,画出x=7.5×10-3 m处质点做简谐运动的振动图象(至少一个周期).
②现测得超声波信号从渔船到鱼群往返一次所用的时间为4 s,求鱼群与渔船间的距离(忽略船和鱼群的运动).
能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本电中性的两极板中的一个极板移到另一个极板的过程. 在移动过程中克服电场力做功,电源的电能转化为电容器的电场能.实验表明:电容器两极间的电压与电容器所带电量如图所示.
(1)对于直线运动,教科书中讲解了由v-t图像求位移的方法.请你借鉴此方法,根据图示的Q-U图像,若电容器电容为C,两极板间电压为U,求电容器所储存的电场能.
(2)如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为C的电容器.框架上一质量为m、长为L的金属棒平行于地面放置,离地面的高度为h.磁感应强度为B的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.
求a. 金属棒落地时的速度大小
b. 金属棒从静止释放到落到地面的时间
(1)如图1所示,固定于水平面上的金属框架abcd,处在竖直向下的匀强磁场中。金属棒MN沿框架以速度v向右做匀速运动。框架的ab与dc平行,bc与ab、dc垂直。MN与bc的长度均为l,在运动过程中MN始终与bc平行,且与框架保持良好接触。磁场的磁感应强度为B。
a. 请根据法拉第电磁感应定律,推导金属棒MN中的感应电动势E;
b. 在上述情景中,金属棒MN相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关。请根据电动势的定义,推导金属棒MN中的感应电动势E。
(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景: 如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l的绝缘细管MN,沿纸面以速度v向右做匀速运动。在管的N端固定一个电量为q的带正电小球(可看做质点)。某时刻将小球释放,小球将会沿管运动。已知磁感应强度大小为B,小球的重力可忽略。在小球沿管从N运动到M的过程中,求小球所受各力分别对小球做的功。