(本小题满分13分)
已知函数(
是自然对数的底数)
(1)求的最小值;
(2)不等式的解集为P,若
实数
的取值范围。
抛物线的顶点在原点,焦点在射线x-y+1=0上
(1)求抛物线的标准方程
(2)过(1)中抛物线的焦点F作动弦AB,过A、B两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出的值
在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足,将
沿EF折起到
的位置,使二面角
成直二面角,连结
,
(如图)(I)求证:
(Ⅱ)求点B到面
的距离(Ⅲ)求异面直线BP与
所成角的余弦
甲、乙、丙3人投篮,投进的概率分别是.
(Ⅰ)现3人各投篮1次,分别求3人都没有投进和3人中恰有2人投进的概率.
(Ⅱ)用ξ表示乙投篮4次的进球数,求随机变量ξ的概率分布及数学期望Eξ.
在中,角
的对边分别为
.(I)求
;(II)若
,且
,求
.
已知M、N两点的坐标分别是是常数
,令
是坐标原点
.
(Ⅰ)求函数的解析式,并求函数
在
上的单调递增区间;
(Ⅱ)当时,
的最大值为
,求a的值,并说明此时
的图象可由函数
的图象经过怎样的平移和伸缩变换而得到?