(本题12分)如图,已知△ABC是边长为1的正三角形,M、N分别是
边AB、AC上的点,线段MN经过△ABC的中心G,设ÐMGA=a()
(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数
(2)求y=的最大值与最小值
在中,内角
所对的边长分别为
,
,
,
.
求sinC和b的值.
已知函数,
.
(I)讨论函数的单调性;
(Ⅱ)当时,
≤
恒成立,求
的取值范围.
如图,在轴上方有一段曲线弧
,其端点
、
在
轴上(但不属于
),对
上任一点
及点
,
,满足:
.直线
,
分别交直线
于
,
两点.
(Ⅰ)求曲线弧的方程;
(Ⅱ)求的最小值(用
表示);
小波以游戏方式决定参加学校合唱团还是参加学校排球队.游戏规则为:以O为起点,再从(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为
.若
就参加学校合唱团,否则就参加学校排球队.
(I)求小波参加学校合唱团的概率;
(II)求的分布列和数学期望.
在平面直角坐标系中,直线l与抛物线
相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求的值;
(II)如果,证明直线l必过一定点,并求出该定点坐标.