已知一个动点M在圆上移动,它与定点Q(4,0)所连线段的中点为P.
(1)求点P的轨迹方程.
(2)过定点(0,-3)的直线l与点P的轨迹交于不同的两点且满足
,求直线l的方程.
在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC, 是等边三角形.
(1)在棱AC上是否存在一点M,使直线AB1//平面BMC1,请证明你的结论.
(2)设D为AC的中点,P为AB1上的动点, 且AB=2,AA1=.求三棱锥P-BC1D的体积.
如图1矩形APCD中,AD=2AP,B为PC的中点,将三角形APB折沿AB折起,使得PD=PC,如图2.
(1)若E为PD中点,证明CE//平面APB;
(2)证明:平面APB平面ABCD.
已知圆C:,直线
:
.
(1)求证:对,直线
与圆C总有两个不同的交点;
(2)若直线被圆C截得的弦长最小时,求直线
的方程.
如图,矩形ABCD所在的平面与三角形CDE所在的平面交于CD, AE平面CDE.
求证:(1)AB//平面CDE;
(2)CD平面ADE.