(选修模块3—5)
(1)下列说法正确的是
A.康普顿效应进一步证实了光的波动特性 |
B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量的量子化 |
C.经典物理学不能解释原子的稳定性和原子光谱的分立特征 |
D.天然放射性元素的半衰期与环境的温度有关 |
(2)是不稳定的,能自发地发生衰变。
①完成衰变反
应方程
。
②衰变为
,共经过 次
衰变, 次
衰变。
(3)氢原子的能级如图所示,有一群处于n=4能级的氢原子。如果原子n=2向n=1跃迁所发生的光正好使某种金属材料产生光电效应,则:
①这群氢原子发出的光谱中共有几条谱线能使该金属产生光电效应?
②从能级n=4向n=1发出的光照射该金属材料,所产生的光电子的最大初动能为多少?
如图a所示,水平直线MN下方有竖直向下的匀强电场,现将一重力不计、比荷=106C/kg的正电荷于电场中的O点由静止释放,经过
×10-5 s时间以后电荷以v0=1.5×104 m/s的速度通过MN进入其上方的均匀磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻)。求:
(1)匀强电场的电场强度E;
(2)图b中t=×10-5 s时刻电荷与O点的水平距离;
(3)如果在O点正右方d = 68cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板的时间。
如图所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E和;Ⅱ区域内有垂直向外的水平匀强磁场,磁感应强度为B。一质量为m、带电量为q的带负电粒子(不计重力)从左边界O点正上方的M点以速度v0水平射入电场,经水平分界线OP上的A点与OP成60°角射入Ⅱ区域的磁场,并垂直竖直边界CD进入Ⅲ区域的匀强电场中。求:
(1)粒子在Ⅱ区域匀强磁场中运动的轨道半径。
(2)O、M间的距离。
(3)粒子从M点出发到第二次通过CD边界所经历的时间。
如图所示,在xOy坐标系中有虚线OA,OA与x轴的夹角θ=300,OA与y轴之间的区域有垂直纸面向外的匀强磁场,OA与x轴之间的区域有沿x轴正方向的匀强电场,已知匀强磁场的磁感应强度B=0.25 T,匀强电场的电场强度E=5×105 N/C。现从y轴上的P点沿与y轴正方向夹角60°的方向以初速度v0=5×105 m/s射入一个质量m=8×10-26 kg、电荷量q=+8×10-19 C的带电粒子,粒子经过磁场、电场后最终打在x轴上的Q点,已知P点到O的距离为m(带电粒子的重力忽略不计)。求:
(1)粒子在磁场中做圆周运动的半径;
(2)粒子从P点运动到Q点的时间;
(3)Q点的坐标.
如图(a)所示,“┙”型木块放在光滑水平地面上,木块水平表面AB粗糙,光滑表面BC且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b)所示.已知sin37°=0.6,cos37°=0.8,g取10m/s2.求:
(1) 斜面BC的长度;
(2) 滑块的质量;
(3) 运动过程中滑块克服摩擦力做的功.
如图所示,一长木板质量为M=4kg,木板与地面的动摩擦因数μ1=0.2,质量为m=2kg的小滑块放在木板的右端,小滑块与木板间的动摩擦因数μ2=0.4。开始时木板与滑块都处于静止状态,木板的右端与右侧竖直墙壁的距离L=2.7m。现给木板以水平向右的初速度v0=6m/s使木板向右运动,设木板与墙壁碰撞时间极短,且碰后以原速率弹回,取g=10m/s2,求:
(1)木板与墙壁碰撞时,木板和滑块的瞬时速度各是多大?
(2)木板与墙壁碰撞后,经过多长时间小滑块停在木板上?