(本小题满分12分)在直三棱柱
ABC—A1B1C1中,CA=CB=CC1=2,
,E、F分别是BA、BC的中点,G是AA1上一点,且
(Ⅰ)确定点G的位置;
(Ⅱ)求直线AC1与平面EFG所成角θ的大小.
如图,动物园要围成相同面积的长方形虎笼四间.一面可利用原有的墙,其他各面用钢筋网围成.
(1)现有可围成36m长的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?
(2)若使每间虎笼的面积为24m2,则每间虎笼的长、宽各设计为多少时,可使围成的四间虎笼的钢筋网总长最小?
已知函数f(x)=,x∈[1,+∞).
(1)当a=4时,求函数f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.
(1)已知x<,求函数y=4x-2+
的最大值;
(2)已知x>0,y>0且=1,求x+y的最小值.
(1)若a>b>c,求证:;
(2)若a>b>c,求使得恒成立的k的最大值.
已知x>0,y>0,求证:.