(本小题满分12分)
某公司在“2010年上海世博会知识宣传”活动中进行抽奖活动,抽奖规则是:在一个盒子中装有8张大小相同的精美卡片,其中2张印有“世博会欢迎您”字样,2张印有“世博会会徽”图案,4张印有“海宝”(世博会吉祥物)图案,现从盒子里无放回的摸取卡片,找出印有“海宝”图案的卡片表示中奖且停止摸卡。
(Ⅰ)求最多摸两次中奖的概率;
(Ⅱ)用表示摸卡的次数,求
的分布列和数学期望。
在数列中,
为常数,
,且
成公比不等于1的等比数列.
(Ⅰ)求的值;
(Ⅱ)设,求数列
的前
项和
。
某校为了解毕业班学业水平考试学生的数学考试情况, 抽取了该校100名学生的数学成绩, 将所有数据整理后, 画出了样频率分布直方图(所图所示), 若第1组、第9组的频率各为.
(Ⅰ) 求的值, 并估计这次学业水平考试数学成绩的平均数;
(Ⅱ)若全校有1500名学生参加了此次考试,估计成绩在分内的人数.
如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.
(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.
已知函数的图像上两相邻最高点的坐标分别为
.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,分别是角A,B,C的对边,且
求
的取值范围.
已知函数,其中
为正常数.
(Ⅰ)求函数在
上的最大值;
(Ⅱ)设数列满足:
,
,
(1)求数列的通项公式
;
(2)证明:对任意的,
;
(Ⅲ)证明:.