在中,两个定点
,
的垂心H(三角形三条高线的交点)是AB边上高线CD的中点。
(1)求动点C的轨迹方程;
(2)斜率为2的直线交动点C的轨迹于P、Q两点,求
面积的最大值(O是坐标原点)。
为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m.
(1)求直线EF的方程(4 分 ).
(2)应如何设计才能使草坪的占地面积最大?
一圆与轴相切,圆心在直线
上,在
上截得的弦长为
,求此圆的方程.
已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点.
(Ⅰ)求AB边所在的直线方程;
(Ⅱ)求中线AM的长.
已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.
(Ⅰ)求该圆台的母线长;
(Ⅱ)求该圆台的体积.
如图,O是正方形ABCD的中心,PO底面ABCD,E是PC的中点.求证:
(Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC 平面BDE