(本小题满分16分)
对于函数,如果
是一个三角形的三边长,那么
也是一个三角形的三边长,则称函数
为“保三角形函数”.
对于函数,如果
是任意的非负实数,都有
是一个三角形的三边长,则称函数
为“恒三角形函数”.
(Ⅰ)判断三个函数“(定义域均为
)”中,哪些是“保三角形函数”?请说明理由;
(Ⅱ)若函数是“恒三角形函数”,试求实数
的取值范围;
(Ⅲ)如果函数是定义在
上的周期函数,且值域也为
,试证明:
既不是“恒三角形函数”,也不是“保三角形函数”.
(本题13分)在几何体ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1.
(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE;
(3)求几何体ABCDE的体积.
(本题12分)一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问:
(1)取出的两只球都是白球的概率是多少?
(2)取出的两只球至少有一个白球的概率是多少?
(本小题满分14分)
在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.
(Ⅰ)求笼内恰好剩下1只果蝇的概率;
(Ⅱ)求笼内至少剩下5只果蝇的概率.
(本小题满分13分)
袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分
为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡
片颜色不同且标号之和小于4的概率.
(本小题满分12分)
某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
(1) 算出线性回归方程;(a,b精确到十分位)
(2)气象部门预测下个月的平均气温约为6℃,据此估计,求该商场下个月毛衣的销售量.