游客
题文

(本小题满分12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,的部分图像如下图所示:
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)写出函数f(x)的递增区间.

科目 数学   题型 解答题   难度 中等
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

已知函数f(x)=sin2ωx+sinωxcosωx(ω>0)的最小正周期为π,
(Ⅰ)求ω的值及函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在[0,]上的值域.

已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.

对于函数f(x)(x∈D),若x∈D时,恒有成立,则称函数是D上的J函数.
(Ⅰ)当函数f(x)=mlnx是J函数时,求m的取值范围;
(Ⅱ)若函数g(x)为(0,+∞)上的J函数,
试比较g(a)与g(1)的大小;
求证:对于任意大于1的实数x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).

已知圆C:的半径等于椭圆E:(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x-的距离为,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).

(Ⅰ)求椭圆E的方程;
(Ⅱ)求证:|AF|-|BF|=|BM|-|AM|.

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.

(Ⅰ)证明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号