(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.
(1) 求证:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.
设全集为R,,
,
.
(Ⅰ)求及
;
(Ⅱ)若,求实数a的取值范围.
已知函数.
(Ⅰ)当时,求曲线
在
处的切线方程;
(Ⅱ)设函数,求函数
的单调区间;
(Ⅲ)若,在
(e=2.71828…)上存在一点x0,使得
成立,求a的取值范围.
某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:
(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;
(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.
已知函数,曲线
在点x=0处的切线为
:
,若
时,
有极值.
(1)求a,b,c的值;
(2)求在
上的最大值和最小值.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为
.
(Ⅰ)求乙投球的命中率p;
(Ⅰ)求甲投球2次,至少命中1次的概率.