某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:
(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;
(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.
已知点、
,若动点
满足
.
(1)求动点的轨迹曲线
的方程;
(2)在曲线上求一点
,使点
到直线:
的距离最小.
数列的各项均为正数,
为其前
项和,对于任意的
,总有
成等差数列.
(1)求;
(2)求数列的通项公式;
(3)设数列的前
项和为
,且
,求证:对任意正整数
,总有
在边长为的正方形
中,
分别为
的中点,
分别为
的中点,现沿
折叠,使
三点重合,重合后的点记为
,构成一个三棱锥.
(1)请判断与平面
的位置关系,并给出证明;
(2)证明平面
;
(3)求四棱锥的体积.
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
高校 |
相关人数 |
抽取人数 |
A |
18 |
![]() |
B |
36 |
2 |
C |
54 |
![]() |
(1)求,
;
(2)若从高校B、C抽取的人中选2人作专题发言,
求这2人都来自高校C的概率.
已知函数,
(1)求的值;
(2)若,且
,求
.