已知点、
,若动点
满足
.
(1)求动点的轨迹曲线
的方程;
(2)在曲线上求一点
,使点
到直线:
的距离最小.
对于项数为的有穷数列数集
,记
,即
为
、
、
、
中的最大值,并称数列
是
的控制数列.如
、
、
、
、
的控制数列是
、
、
、
、
.
(1)若各项均为正整数的数列的控制数列为
、
、
、
、
,写出所有的
;
(2)设是
的控制数列,满足
(
为常数,
、
、
、
).求证:
.
已知椭圆,椭圆
以
的长轴为短轴,且与
有相同的离心率.
(1)求椭圆的方程;
(2)设为坐标原点,点
、
分别在椭圆
和
上,
,求直线
的方程.
设函数.
(1)设,
,
,证明:
在区间
内存在唯一的零点;
(2)设,若对任意
、
,有
,求
的取值范围.
一汽车厂生产、
、
三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆)
轿车![]() |
轿车![]() |
轿车![]() |
|
舒适型 |
![]() |
![]() |
![]() |
标准型 |
![]() |
![]() |
![]() |
按类型分层抽样的方法在这个月生产的轿车中抽取辆,其中有
类轿车
辆.
(1)求的值;
(2)用分层抽样的方法在类轿车中抽取一个容量为
的样本.将该样本看成一个总体,从中任取
辆,求至少有
辆舒适型轿车的概率;
(3)用随机抽样的方法从类舒适型轿车中抽取
辆,经检测它们的得分如下:
、
、
、
、
、
、
、
.把这
辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值
不超过的概率.
如图,在三棱锥中,
是等边三角形,
.
(1)证明::;
(2)证明:;
(3)若,且平面
平面
,求三棱锥
体积.