(本小题满分14分)
下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为
,若已知
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
… |
… |
… |
… |
… |
![]() |
![]() |
![]() |
… |
![]() |
(1)求的值;
(2)求用表示
的代数式;
(3)设表中对角线上的数,
,
,……,
组成一列数列,设Tn=
+
+
+……+
求使不等式
成立的最小正整数n.
(本小题满分12分)
设函数
(1)当时,求
的最大值;
(2)令,(0
≤3),其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(3)当,
,方程
有唯一实数解,求正数
的值.
(本小题满分12分)
在交通拥挤地段,为了确保交通安全,规定机动车相互之间的距离d(米)与车速v(千米/小时)需遵循的关系是d≥(其中a(米)是车身长,a为常量),同时规定d≥
.
(1)当d=时,求机动车车速的变化范围;
(2)设机动车每小时流量Q=,应规定怎样的车速,使机动车每小时流量Q最大.
(本小题满分12分)
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=
CEF=
,AD=
,EF=2.
(1)求证:AE//平面DCF;
(2)当AB的长为何值时,二面角A-EF-C的大小为.
(本小题满分12分)
△ABC中,a,b,c分别是角A,B,C的对边,向量=(2sinB,2-cos2B),
,
⊥
.
(1)求角B的大小;
(2)若,b=1,求c的值.
(本小题满分12分)
在各项均为负数的数列中,已知点
在函数
的图像上,且
.
(1)求证:数列是等比数列,并求出其通项;
(2)若数列的前
项和为
,且
,求
.